Устройство системного блока: состав и характеристики компонентов
Системный блок — на первый взгляд, простое инженерное решение в форме коробки, назначение которого, объединение компонентов базовой архитектуры ПК.
Базовая архитектура ПК — это основные компоненты системного блока, без которых невозможна работа компьютера.
В чём же сложность системного блока, как решения? Для нас ни в чём, потому что дизайнеры и инженеры продумали всё до мелочей — нам не нужно ломать голову над тем, как и что устанавливать в системный блок. К тому же, продумано расположение компонентов с учётом их охлаждения.
Состав системного блока
В базовый состав системного блока входят следующие компоненты:
- материнская плата,
- процессор,
- оперативная память,
- твердотельный накопитель (SSD) или жёсткий диск (HDD),
- блок питания,
- видеокарта.
Графический процессор видеокарты может быть встроен в центральный процессор и использовать часть оперативной памяти для своей работы.
Характеристики компонентов системного блока
Параметры компьютера напрямую зависят от характеристик компонентов, которые входят в состав системного блока.
Корпус системного блока
Неотъемлемой частью системного блока является корпус, который имеет отсеки для установки материнской платы (1), накопителей (2), блока питания (3) и нишу для прокладки кабелей питания (кабель менеджмент (4)).
Не стоит забывать об охлаждении компьютера — корпус имеет места для установки кулеров забора холодного и отвода горячего воздуха. Захват холодного воздуха осуществляется кулерами, расположенными в лицевой и боковой области корпуса. Выброс горячего воздуха производится вентиляторами на тыльной и верхней стороне системного блока.
При возможности применения водяного охлаждения, корпус оснащается специальными отверстиями для прокладки трубок и местом установки блока охлаждения жидкости.
К основным характеристикам корпуса системного блока, можно отнести:
- отсутствие или наличие блока питания в комплекте и его мощность,
- расположение блока питания — вверху или внизу (предпочтительней для лучшего охлаждения),
- возможность установки полноформатной материнской платы (зависит от типоразмера корпуса),
- ширина ниши для установки материнской платы (полезно для установки видеокарт с длинной базой),
- количество кулеров воздушного охлаждения,
- возможность установки водяного охлаждения.
Материнская плата
Системная плата — основа любой архитектуры ПК — объединяет компоненты системного блока в единое целое. На материнскую плату устанавливаются — процессор и система охлаждения процессора, оперативная память, видеокарта. К ней подключаются — накопители (SSD, HDD), блок питания, прочие считывающие и записывающие устройства, а также вся периферия компьютера (клавиатура, мышь, монитор (опционально), принтер, сканер, МФУ, шлем виртуальной реальности и т.д.)
Материнская плата, в зависимости от характеристик, может иметь:
- ряд тонких настроек для разгона производительности системы,
- разное число слотов для установки оперативной памяти,
- поддержку двух и более видеокарт,
- возможность подключения монитора (при работе со встроенной графикой),
- разное число USB-разъёмов,
- различные габариты (зависит от стандарта системной платы).
Процессор
Центральное процессорное устройство или ЦПУ (CPU) — ядро системного блока, отвечает за выполнение программного кода, взаимодействует практически со всеми компонента архитектуры ПК.
Современные модели процессоров оснащаются встроенной графикой, что позволяет исключить видеокарту из состава системного блока. По характеристикам, такие процессоры подходят для домашних/офисных или бюджетных игровых компьютеров. При правильной настройке BIOS, встроенный графический процессор способен задействовать до 2 Гб оперативной памяти под свои нужды.
Охлаждение процессора
На процессор ложится основная нагрузка, в результате выделяется огромное количество тепла и устройство нуждается в охлаждении. В зависимости от мощности процессора, варьируются и размеры воздушной системы охлаждения. Чем большее количество тепла нужно рассеивать, тем крупнее габариты процессорных кулеров.
Оперативная память
Оперативное запоминающее устройство или ОЗУ — энергозависимая память, в которой находится исполняемый процессором код (программа), промежуточные данные ввода/вывода, настройки драйверов и временные параметры операционной системы.
Главные характеристики оперативной памяти — объём и частота работы — чем выше показатели, тем лучше.
Накопители SSD и HDD
В состав системного блока могут входить два вида накопителей — твердотельный (SSD) и жёсткий диск (HDD).
Твердотельный накопитель или SSD — обладает высокой скоростью чтения/записи, хорошо подходит для установки операционной системы и обеспечивает «молниеносный» старт компьютера. Из минусов, имеет небольшой объём и ограниченный ресурс на операции чтения/записи.
Жёсткий диск или HDD — имеет большой объём, подходит для хранения фото, видео, игр, обладает высоким ресурсом в отношении операций чтения/записи. Из минусов, низкая скорость чтения/записи, при длительной эксплуатации появляются битые сектора.
Блок питания
Блок питания или БП — основной питающий компонент системного блока. От мощности и характеристик блока питания зависит стабильность работы всей системы.
К важным характеристикам БП относятся следующие параметры:
- мощность (всегда должна быть с запасом, на случай разгона системы),
- линия питания процессора должна иметь коннектор 8-pin (позволит реализовать весь потенциал процессора),
- несколько линий 6-pin и 8-pin для установки одной или более видеокарт,
- диаметр и расположение кулера охлаждения (влияет на уровень шума и эффективность охлаждения БП).
Видеокарта
Графическая карта — главный компонент игрового системного блока. От видеокарты зависят качество и производительность графики в играх.
Основные характеристики, на которые стоит обратить внимание, при выборе видеокарты:
- частота работы графического процессора,
- ширина шины (для взаимодействия с центральным процессором),
- объём видеопамяти и её тактовая частота (используется для хранения готовых кадров).
Прочие компоненты
Мы ознакомились с базовыми компонентами в составе системного блока. Существует множество других устройств, которые могут значительно расширить функционал компьютера:
- звуковая карта или аудиокарта — обеспечивает более высокое качество звука, снабжена интерфейсом для записи аудиосигнала — позволяет превратить компьютер в студию звукозаписи;
- карта DVB-S2 — принимает и обрабатывает спутниковый сигнал — позволяет просматривать открытые ТВ-каналы и получать доступ к высокоскоростному интернету;
- карта видеозахвата — позволяет обрабатывать, как аналоговый, так и цифровой видеосигнал — используется при оцифровке видео с магнитных носителей (кассет);
- прочие контроллеры — диагностика авто, работа с ЧПУ-станками и измерительными приборами.
Устройство системного блока
Подведём итог, на наглядном примере, посмотрим на устройство системного блока, а также на расшифровку его характеристик.
Расшифровка характеристик системного блока
Возьмём, для примера, следующие характеристики и расшифруем их:
[Intel Core i3 9100F, 4×3600 МГц, 8 ГБ DDR4, GeForce GTX 1650, SSD 512 ГБ, без ОС]
Источник
Что такое ОЗУ и для чего требуются оперативная память в компьютере
Оперативная память (ОЗУ) имеет английское название RAM (Random Access Memory). Также данный узел может именоваться «оперативка», память. По техническим характеристикам это устройство представляет собой энергозависимую компоненту общей компьютерной памяти, в которой происходит хранение временных данных в виде машинного кода или программы.
Дополнительно в оперативной памяти ПК содержатся временные входные, выходные или промежуточные данные, которые находятся в процессе обработки центральным процессором.
Физическое исполнение этого типа памяти представлено в виде планок, на которых содержится набор микросхем и токопроводящих дорожек. Устанавливать оперативную память необходимо в специальные гнезда, расположенные на материнской плате компьютера. Они бывают различного цвета, обычно голубыми, желтыми или зелеными. Каждая планка в области расположения пинов (контактов) имеет прорезь, которая совмещается с аналогичной в гнезде. По бокам имеются стопорные защелки.
Планка помещается в специальные гнезда с защелками
Понятие энергонезависимая память подразумевает устройство ввода/вывода, для работы которого не требуется наличие постоянного питания. Энергозависимая память – это область размещения информации на компьютере, для функционирования которой требуется наличие источника питания.
Поскольку ОЗУ относится к энергозависимым разновидностям устройств ввода/вывода, то это накладывает отпечаток на особенности ее работы. В отличие от ПЗУ (постоянного запоминающего устройства), на которое происходит сохранение нужной информации, все данные, содержащиеся в ОЗУ, после выключения пользователем ПК обнуляются.
Еще одним моментом, для чего нужна оперативная память на компьютере, является повышение производительности. В отличие от центрального процессора, который имеет высокую скорость отдачи и приема данных, винчестер или периферийные устройства не обладают подобными характеристиками.
При возникновении необходимости обмена данными между внутренними частями ПК, оперативная память играет роль буфера, где кэшируются процессы для ускорения получения доступа к ним. Аналогично работают программы, которые «сбрасывают» кэш временной информации в оперативную память, чтобы в будущем не нагружать ЦП, а получать необходимые данные из ОЗУ.
Память нужна для улучшения производительности ПК
Таким образом, наличие оперативной памяти сказывается на работе системы, позволяя уменьшить время обмена данными между программными средствами и функциональными частями ПК (процессор, «северный» и «южный» мост, устройства ввода/вывода).
Наличие оперативной памяти характерно не только для стационарного ПК. Это важная деталь любого электронного устройства (планшет, ноутбук, смартфон или даже смарт-ТВ).
Характеристики оперативной памяти
Чтобы разобраться, что такое оперативная память для ноутбука или настольного компьютера, требуется знать важные параметры, определяющие выбор – это характеристики ОЗУ.
Сюда входит не только производительность или цена, но также такие параметры, как объем, частота работы вычислительного процессора, тайминги.
1 Гб ОЗУ: что это такое или характеристики объема
Очень часто при прочтении технических характеристик устройства, в частности, компьютера, покупатель сталкивается с таким текстом: ОЗУ – 2Гб. Что это такое, и какое влияние оказывает объем оперативки на работу ПК.
Для понимания важности показателя в вопросе, что такое RAM и описания зависимости скорости работы ПК от объема можно привести простой пример. Во время работы пользователя на компьютере, значительное количество данных находятся в процессе постоянного перемещения из ПЗУ в ОЗУ для ускорения обмена и повышения скорости обработки информации компьютером. В оперативной памяти находится кэш всех открытых приложений. В этот момент объем памяти никоим образом не сказывается на работе.
Объем оперативной памяти можно проверить в сведениях о системе
Проблема может начинаться при превышении максимального количества данных, которые могут размещаться в ОЗУ. В этом случае более старая информация перемещается в специально отведенное место на диске, который именуется файлом подкачки.
Итогом становится подтормаживание работы, поскольку скорость обмена данными между жестким диском и процессором намного ниже, чем может гарантировать ОЗУ. Поэтому напрашивается один вывод: объем оперативной памяти должен превышать максимальное суммарное потребление ресурсов компьютера открытыми приложениями, в том числе и системными.
Объем современной оперативной памяти для ПК измеряется гигабайтами (Гб). Рекомендуемые объемы ОЗУ следующие:
До 2 Гб будет достаточно для нормальной работы офисного компьютера, в котором применяются текстовые редакторы. От 2 до 4 Гб нормальный объем для домашнего ПК, который будет использоваться для различных целей. Свыше 4 Гб – это объем, необходимый для современных игр. Специалисты при сборке игрового компьютера советуют не экономить на объеме и устанавливать большее количество планок, так сказать «на будущее». Для игрового компьютера потребуется максимально поддерживаемый объем ОЗУ
При установке на ПК 32-битной версии операционной системы не рекомендуется устанавливать более 4 Гб ОЗУ, поскольку это не поддерживается ОС. Если планируется применять больший объем, то следует позаботиться о приобретении 64-битной версии программы.
Частота
Еще одной важной характеристикой ОЗУ в компьютере, является частоты работы. Этот параметр означает ширину канала, который применяется для обмена между материнской платой, процессором и непосредственно памятью. Здесь действует принцип «больше значит лучше». Но следует учитывать, что частотная характеристика памяти должна соответствовать аналогичному показателю системной платы. Например, при заявленной работе ОЗУ на частоте 1600 МГц и наличии в шине «материнки» поддержки только 1066 МГц, фактическое значение показателя у ОЗУ составит упомянутые 1066 МГц.
Также при упоминании частоты памяти может идти речь не о такте, а о скорости передачи. Этот показатель, которые правильно именовать скорость передачи данных представляет собой количество операции, результатом которых является обмен данными, совершенными за промежуток времени в одну секунду. Единицей измерения является гигатранфер или мегатрансфер (GT/s или MT/s). Характеристики приводятся в описании памяти.
Частота памяти влияет на скорость ее работы
Если говорить о тактовой частоте, то она составляет половину указанной удвоенной скорости передачи данных. Этот показатель скрывается под буквенным индексом DDR или Double Date Rate.
Список реальных показателей, которые чаще всего встречаются у производителей ОЗУ, приводится в таблице:
Тип памяти | Возможные скорости работы, МГц | Такт, МГц |
DDR | 200/266/333/400 | 100/133/166/200 |
DDR2 | 400/533/667/800/1066 | 200/266/333/400/533 |
DDR3 | 800/1066/1333/1600/1800/2000/2133/2200/2400 | 400/533/667/800/1800/1000/1066/1100/1200 |
DDR4 | 2133/2400/2666/2800/3000/3200/3333 | 1066/1200/1333/1400/1500/1600/1666 |
Следует обращать внимание на максимальный показатель такта, который поддерживает материнская плата. Если будет установлено две планки, одна из которых работает на более высоком такте, то фактический параметр частоты определяет низшие характеристики ОЗУ.
Тайминг
Тайминг означает способность задержки памяти. Существует такой параметр, как время доступа или CAS Latency. Его показатель определяет число тактовых циклов, создаваемых модулем памяти в процедуре задержки возврата информации, запрос на которую поступает от ЦП. Если показатель тайминга 9 включает девять проходов, то, например, цифра 7 будет означать всего семь тактовых циклов.
При равных показателях объема и скорости передачи информации, ОЗУ с таймингом в 7 циклов работает быстрее. Это называется латентностью.
Тайминги можно посмотреть в специализированных программах типа AIDA64
Вывод: Чем ниже показатель тайминга, тем быстрее осуществляется работа ОЗУ.
Очень часто производитель не устанавливает максимальную частоту работы памяти, чтобы сохранить оптимальные показатели тайминга. При повышении такта автоматически возрастает рабочий тайминг, что не лучшим образом сказывается на производительности модуля.
Как узнать объем ОЗУ, установленной на компьютере
Для того чтобы точно знать количество оперативной памяти, установленной на компьютере, существует несколько способов. Подобная процедура может потребоваться, чтобы знать, как повысить ОЗУ при недостаточном ее количестве.
Варианты просмотра объема (в порядке усложнения):
Через свойства системы. Для этого потребуется открыть ярлык «Мой компьютер» правой кнопкой и выбрать «Свойства». Пользователь попадет на экран с основными сведениями о системе, где будет указан установленный объем ОЗУ. При помощи командной строки. Нажатием клавиш Win+R вызывается поле ввода команды. Туда необходимо прописать «msinfo32». После нажатия ОК открывшееся окно предоставит подробную информацию.
Нажатие клавиш Win+R приведет к появлению командной строки
Аналогично можно выполнить команду «dxdiag». Это команда вызывает средства диагностики DirectX. Первая вкладка будет содержать искомую информацию. Версии ОС начиная с 8, поддерживают просмотр сведений о системе через диспетчер задач. Он вызывается сочетанием клавиш Ctrl+Alt+Del. Во вкладке «Производительность» можно увидеть полный объем ОЗУ и количество занятой памяти в настоящий момент времени. Можно пойти более простым путем, если человек дружит с отверткой. Просто открыть системный блок или снять крышку на ноутбуке, под которой скрывается планка ОЗУ и посмотреть стикер на ней, где содержатся тип памяти, частота и тайминги. Посредством специального софта. Существует немало программ, которые предлагают проверить основные параметры компьютера. Например, «CPU-Z» или «Aida64». Последняя распространяется на платной основе. При помощи программ удается не только определить объем памяти, но также выяснить работающие частоты, все виды таймингов и посмотреть даже напряжение, передаваемое на планку.
«AIDA64» – программа, которая предоставляет исчерпывающие сведения о компьютере и системе
Источник
Компьютерная память
Компью́терная па́мять (устройство хранения информации, запоминающее устройство) — часть вычислительной машины, физическое устройство или среда для хранения данных, используемая в вычислениях систем в течение определённого времени. Память, как и центральный процессор, является неизменной частью компьютера с 1940-х годов. Память в вычислительных устройствах имеет иерархическую структуру и обычно предполагает использование нескольких запоминающих устройств, имеющих различные характеристики.
В персональных компьютерах «памятью» часто называют один из её видов — динамическую память с произвольным доступом (DRAM), — которая используется в качестве ОЗУ персонального компьютера.
Задачей компьютерной памяти является хранение в своих ячейках состояния внешнего воздействия, запись информации. Эти ячейки могут фиксировать самые разнообразные физические воздействия. Они функционально аналогичны обычному электромеханическому переключателю и информация в них записывается в виде двух чётко различимых состояний — 0 и 1 («выключено»/«включено»). Специальные механизмы обеспечивают доступ (считывание, произвольное или последовательное) к состоянию этих ячеек.
Процесс доступа к памяти разбит на разделённые во времени процессы — операцию записи (сленг. прошивка, в случае записи ПЗУ) и операцию чтения, во многих случаях эти операции происходят под управлением отдельного специализированного устройства — контроллера памяти.
Также различают операцию стирания памяти — занесение (запись) в ячейки памяти одинаковых значений, обычно 0016 или FF16.
Наиболее известные запоминающие устройства, используемые в персональных компьютерах: модули оперативной памяти (ОЗУ), жёсткие диски (винчестеры), дискеты (гибкие магнитные диски), CD- или DVD-диски, а также устройства флеш-памяти.
Источник
Вспомнить все. Эволюция компьютерной памяти
Электромагнитные реле стояли в самых первых компьютерах, а их жизнь на рынке автоматизированных вычислений была недолгой. Однако видоизмененные катушки используют в технике и по сей день.
В стародревние времена — дело было почти 80 лет назад, на заре становления вычислительной техники — память вычислительных устройств было принято делить на три типа. На первичную, вторичную и внешнюю. Сейчас этой терминологией уже никто не пользуется, хотя сама классификация существует и по сей день. Только первичную память теперь называют оперативной, вторичную — внутренними жесткими дисками, ну а внешняя маскируется под всевозможные оптические диски и флэш-накопители.
Прежде чем начать путешествие в прошлое, давайте разберемся в обозначенной выше классификации и поймем, для чего нужен каждый из типов памяти. Компьютер представляет информацию в виде последовательности бит — двоичных цифр со значениями 1 или 0. Общепринятой универсальной единицей информации считают байт, как правило, состоящий из 8 бит. Все используемые компьютером данные занимают некоторое количество байт. К примеру, типичный музыкальный файл занимает 40 миллионов бит — 5 миллионов байт (или 4,8 мегабайта). Центральный процессор не сможет функционировать без элементарного запоминающего устройства, ведь вся его работа сводится к получению, обработке и записи обратно в память. Именно поэтому легендарный Джон фон Нейман (мы не раз упоминали его имя в цикле статей про мейнфреймы) придумал размещать внутри компьютера независимую структуру, где хранились бы все необходимые данные.
Классификация внутренней памяти разделяет носители еще и по скоростному (и энергетическому) принципу. Быстрая первичная (оперативная) память в наше время используется для хранения критичной информации, к которой ЦП обращается наиболее часто. Это ядро операционной системы, исполняемые файлы запущенных программ, промежуточные результаты вычислений. Время доступа — минимально, всего несколько наносекунд.
Первичная память общается с контроллером, размещенным либо внутри процессора (у последних моделей ЦП), либо в виде отдельной микросхемы на материнской плате (северный мост). Цена на оперативку относительно высока, к тому же она энергозависима: выключили компьютер или случайно выдернули шнур из розетки — и вся информация потерялась. Поэтому все файлы хранятся во вторичной памяти — на пластинах жестких дисков. Информация здесь не стирается после отключения питания, а цена за мегабайт очень низкая. Единственный недостаток винчестеров — низкая скорость реакции, она измеряется уже в миллисекундах.
Кстати, интересный факт. На заре развития компьютеров первичную память не отделяли от вторичной. Главный вычислительный блок был очень медленным, и память не давала эффекта бутылочного горлышка. Оперативные и постоянные данные хранились в одних и тех же компонентах. Позже, когда скорость компьютеров подросла, появились новые типы носителей информации.
Назад в прошлое
Компьютер Bendix G15 с барабанной памятью. Оператор в костюме прилагается.
Одним из основных компонентов первых компьютеров были электромагнитные переключатели, разработанные известным американским ученым Джозефом Хенри еще в 1835 году, когда ни о каких компьютерах никто даже не помышлял. Простой механизм состоял из обмотанного проводом металлического сердечника, подвижной железной арматуры и нескольких контактов. Разработка Хенри легла в основу электрического телеграфа Сэмюеля Морзе и Чарльза Витстоуна.
Первый компьютер, построенный на переключателях, появился в Германии в 1939 году. Инженер Конрад Зюс использовал их при создании системной логики устройства Z2. К сожалению, прожила машина недолго, а ее планы и фотографии были утеряны во время бомбардировок Второй мировой войны. Следующее вычислительное устройство Зюса (под именем Z3) увидело свет в 1941 году. Это был первый компьютер, управляемый программой. Основные функции машины реализовывались при помощи 2000 переключателей. Конрад собирался перевести систему на более современные компоненты, но правительство прикрыло финансирование, посчитав, что идеи Зюса не имеют будущего. Как и ее предшественница, Z3 была уничтожена во время бомбардировок союзников.
Электромагнитные переключатели работали очень медленно, но развитие технологий не стояло на месте. Вторым типом памяти для ранних компьютерных систем стали линии задержки. Информацию несли электрические импульсы, которые преобразовывались в механические волны и на низкой скорости перемещались через ртуть, пьезоэлектронный кристалл или магниторезистивную катушку. Есть волна — 1, нет волны — 0. В единицу времени по проводящему материалу могли путешествовать сотни и тысячи импульсов. По завершении своего пути каждая волна трансформировалась обратно в электрический импульс и отсылалась в начало — вот вам и простейшая операция обновления.
Линии задержки разработал американский инженер Джон Преспер Экерт. Компьютер EDVAC, представленный в 1946 году, содержал два блока памяти по 64 линии задержки на основе ртути (5,5 Кб по современным меркам). На тот момент этого было более чем достаточно для работы. Вторичная память также присутствовала в EDVAC — результаты вычислений записывались на магнитную пленку. Другая система, UNIVAC 1, увидевшая свет в 1951 году, использовала 100 блоков на основе линий задержки, а для сохранения данных у нее была сложная конструкция со множеством физических элементов.
Блок памяти на основе линий задержки больше похож на гиперпространственный двигатель космического корабля. Сложно представить, но подобная махина могла сохранить всего несколько бит данных!
За кадром нашего исследования осталось два довольно значимых изобретения в области носителей данных. Оба сделал талантливый сотрудник Bell Labs Эндрю Бобек. Первая разработка — так называемая твисторная память — могла стать прекрасной альтернативой памяти на основе магнитных сердечников. Она во многом повторяла последнюю, но вместо ферритовых колец для хранения данных использовала магнитную пленку. У технологии были два важных преимущества. Во-первых, твисторная память могла одновременно записывать и считывать информацию с целого ряда твисторов. Плюс к этому, было легко наладить ее автоматическое производство. Руководство Bell Labs надеялось, что это позволит существенно снизить цену твисторной памяти и занять перспективный рынок. Разработку финансировали ВВС США, а память должна была стать важной функциональной ячейкой ракет Nike Sentinel. К сожалению, работа над твисторами затянулась, а на первый план вышла память на основе транзисторов. Захват рынка не состоялся.
«Не повезло в первый раз, так повезет во второй»,— подумали в Bell Labs. В начале 70-х годов Эндрю Бобек представил энергонезависимую пузырьковую память. В ее основе лежала тонкая магнитная пленка, которая удерживала небольшие намагниченные области (пузырьки), хранящие двоичные значения. Спустя какое-то время появилась первая компактная ячейка емкостью 4096 бит — устройство размером один квадратный сантиметр обладало емкостью целой планки с магнитными сердечниками.
Изобретением заинтересовались многие компании, и в середине 70-х разработками в области пузырьковой памяти занялись все крупные игроки рынка. Энергонезависимая структура делала пузырьки идеальной заменой как первичной, так и вторичной памяти. Но и тут планам Bell Labs не удалось сбыться — дешевые винчестеры и транзисторная память перекрыли кислород пузырьковой технологии.
Вакуум — наше все
Вакуумные трубки сохранились в технике и по сей день. Особенной любовью они пользуются среди аудиофилов. Считается, что усилительный тракт на основе вакуумных трубок по качеству звука на голову выше современных аналогов.
К концу 40-х годов системная логика компьютеров переехала на вакуумные трубки (они же электронные трубки или термионные шахты). Вместе с ними новый толчок в развитии получили телевидение, устройства для воспроизведения звука, аналоговые и цифровые компьютеры.
Под загадочным словосочетанием «вакуумная трубка» скрывается довольно простой по строению элемент. Он напоминает обычную лампу накаливания. Нить заключена в безвоздушное пространство, при нагреве она испускает электроны, которые попадают на положительно заряженную металлическую пластину. Внутри лампы под напряжением образуется поток электронов. Вакуумная трубка умеет или пропускать, или блокировать (фазы 1 и 0) проходящий через нее ток, выступая в роли электронного компонента компьютеров. Во время работы вакуумные трубки сильно нагреваются, их надо интенсивно охлаждать. Зато они намного быстрее, чем допотопные переключатели.
Первичная память на основе этой технологии появилась в 1946-1947 годы, когда изобретатели Фредди Вильямс и Том Килберн представили трубку Вильямса — Килберна. Метод сохранения данных был весьма остроумным. На трубке при определенных условиях появлялась световая точка, которая слегка заряжала занимаемую поверхность. Зона вокруг точки приобретала отрицательный заряд (ее называли «энергетическим колодцем»). В «колодец» можно было поместить новую точку или оставить его без внимания — тогда первоначальная точка быстро исчезала. Эти превращения истолковывались контроллером памяти как двоичные фазы 1 и 0. Технология была очень популярна. Память на трубках Вильямса — Килберна устанавливали в компьютеры Ferranti Mark 1, IAS, UNIVAC 1103, IBM 701, IBM 702 и Standards Western Automatic Computer (SWAC).
Параллельно свою трубку, именуемую селектрон, разрабатывали инженеры из компании Radio Corporation of America под управлением ученого Владимира Зворыкина. По задумке авторов селектрон должен был вмещать до 4096 бит информации, что в четыре раза больше, чем у трубки Вильямса — Килберна. Предполагалось, что к концу 1946 года будет произведено около 200 селектронов, но производство оказалось очень дорогим.
Вплоть до весны 1948-го Radio Corporation of America не выпустила ни одного селектрона, но работа над концептом продолжалась. Инженеры изменили дизайн трубки, и в продаже появилась уменьшенная ее версия емкостью 256 бит. Мини-селектроны были быстрее и надежнее трубок Вильямса — Килберна, но стоили по $500 за штуку. И это при массовом производстве! Селектронам, однако, удалось попасть в вычислительную машину — в 1953 году компания RAND выпустила компьютер под забавным названием JOHNNIAC (в честь Джона фон Неймана). В системе были установлены уменьшенные 256-битные селектроны, а общий объем памяти составлял 32 байта.
Наравне с вакуумными трубками в некоторых компьютерах того времени использовалась барабанная память, изобретенная Густавом Таусчеком в 1939 году. Простая конструкция включала большой металлический цилиндр, покрытый сплавом из ферромагнетика. Считывающие головки, в отличие от современных винчестеров, не перемещались по поверхности цилиндра. Контроллер памяти ждал, пока информация самостоятельно пройдет под головками. Барабанная память использовалась в компьютере Атанасова — Берри и некоторых других системах. К сожалению, ее производительность была очень низкой.
Селектрону не было суждено завоевать рынок вычислительных машин — опрятные на вид электронные компоненты так и остались пылиться на свалке истории. И это несмотря на выдающиеся технические характеристики.
В данный момент рынком первичной памяти правит стандарт DDR. Точнее, второе его поколение. Переход на DDR3 состоится уже совсем скоро — осталось дождаться появления недорогих чипсетов с поддержкой нового стандарта. Повсеместная стандартизация сделала сегмент памяти слишком скучным для описания. Производители перестали изобретать новые, уникальные продукты. Все труды сводятся к увеличению рабочей частоты и установке навороченной системы охлаждения.
Технологический застой и робкие эволюционные шаги будут продолжаться до тех пор, пока производители не доберутся до предела возможностей кремния (именно из него изготавливают интегрированные микросхемы). Ведь частоту работы нельзя повышать бесконечно.
Правда, здесь кроется один подвох. Производительности существующих чипов DDR2 достаточно для большинства компьютерных приложений (сложные научные программы не в счет). Установка модулей DDR3, работающих на частоте 1066 МГц и выше, не ведет к ощутимому приросту скорости.
Звездный путь в будущее
Странная текстура на фотографии — это память на основе магнитных сердечников. Перед вами наглядная структура одного из массивов с проводами и ферритовыми кольцами. Представляете, сколько времени приходилось потратить, чтобы найти среди них нерабочий модуль?
Главным недостатком памяти, да и всех остальных компонентов на основе вакуумных трубок было тепловыделение. Трубки приходилось охлаждать при помощи радиаторов, воздуха и даже воды. К тому же постоянный нагрев существенно уменьшал время работы — трубки самым натуральным образом деградировали. Под конец срока эксплуатации их приходилось постоянно настраивать и в конечном итоге менять. Можете представить, скольких усилий и средств стоило сервисное обслуживание вычислительных систем?!
Потом наступило время массивов с близко расположенными ферритовыми кольцами — изобретение американских физиков Эн Вэнг и Вэй-Донг Ву, доработанное студентами под управлением Джея Форрестера из Массачусетского технологического университета (MIT). Через центры колец под углом 45 градусов проходили соединительные провода (по четыре на каждое кольцо в ранних системах, по два в более совершенных). Под напряжением провода намагничивали ферритовые кольца, каждое из которых могло сохранить один бит данных (намагничено — 1, размагничено — 0).
Джей Форрестер разработал систему, при которой управляющие сигналы для многочисленных сердечников шли всего по нескольким проводам. В 1951 году вышла память на основе магнитных сердечников (прямой аналог современной оперативной памяти). В дальнейшем она заняла достойное место во многих компьютерах, включая первые поколения мейнфреймов компаний DEC и IBM. По сравнению с предшественниками у нового типа памяти практически отсутствовали недостатки. Ее надежности хватало для функционирования в военных и даже космических аппаратах. После крушения шаттла «Челленджер», которое привело к смерти семи членов его экипажа, данные бортового компьютера, записанные в памяти с магнитными сердечниками, остались в полной целости и сохранности.
Технологию постепенно совершенствовали. Ферритовые кольца уменьшались в размерах, скорость работы росла. Первые образцы функционировали на частоте порядка 1 МГц, время доступа составляло 60 000 нс — к середине 70-х годов оно сократилось до 600 нс.
Дорогая, я уменьшил нашу память
Производители памяти в наше время больше заботятся о внешнем виде своих продуктов — все равно стандарты и характеристики заранее определены в комиссиях вроде JEDEC.
Следующий скачок в развитии компьютерной памяти произошел, когда были придуманы интегральные микросхемы и транзисторы. Индустрия пошла по пути миниатюризации компонентов с одновременным повышением их производительности. В начале 1970-х полупроводниковая промышленность освоила выпуск микросхем высокой степени интеграции — на сравнительно малой площади теперь умещались десятки тысяч транзисторов. Появились микросхемы памяти емкостью 1 Кбит (1024 бит), небольшие чипы для калькуляторов и даже первые микропроцессоры. Случилась самая настоящая революция.
Особый вклад в развитие первичной памяти внес доктор Роберт Деннард, сотрудник компании IBM. Он разработал первый чип на транзисторе и небольшом конденсаторе. В 1970 году рынок подстегнула компания Intel (которая появилась всего двумя годами раньше), представив чип памяти i1103 емкостью 1 Кбит. Спустя два года этот продукт стал самым продаваемым полупроводниковым чипом памяти в мире.
Во времена первых Apple Macintosh блок оперативной памяти занимал огромную планку (на фото сверху), тогда как объем не превышал 64 Кб.
Микросхемы высокой степени интеграции быстро вытеснили старые типы памяти. С переходом на следующий уровень развития громоздкие мейнфреймы уступили место настольным компьютерам. Основная память в то время окончательно отделилась от вторичной, оформилась в виде отдельных микрочипов емкостью 64, 128, 256, 512 Кбит и даже 1 Мбит.
Наконец, микросхемы первичной памяти переехали с материнских плат на отдельные планки, это сильно облегчило установку и замену неисправных компонентов. Частоты начали расти, время доступа уменьшаться. Первые синхронные динамические чипы SDRAM появились в 1993 году, их представила компания Samsung. Новые микросхемы работали на частоте 100 МГц, время доступа равнялось 10 нс.
С этого момента началось победоносное шествие SDRAM, а к 2000 году этот тип памяти вытеснил всех конкурентов. Определением стандартов на рынке оперативки занялась комиссия JEDEC (Joint Electron Device Engineering Council). Ее участники сформировали спецификации, единые для всех производителей, утвердили частотные и электрические характеристики.
Дальнейшая эволюция не так интересна. Единственное значимое событие произошло в 2000 году, когда на рынке появилась оперативная память стандарта DDR SDRAM. Она обеспечила удвоенную (по сравнению с обычной SDRAM) пропускную способность и создала задел для будущего роста. Вслед за DDR в 2004 году появился стандарт DDR2, который до сих пор пользуется наибольшей популярностью.
В современном IT-мире фразой Patent Troll (патентный тролль) называют фирмы, которые зарабатывают деньги на судебных исках. Они мотивируют это тем, что другие компании нарушили их авторские права. Целиком и полностью под это определение попадает разработчик памяти Rambus.
С момента основания в 1990 году Rambus занималась лицензированием своих технологий сторонним компаниям. К примеру, ее контроллеры и микросхемы памяти можно найти в приставках Nintendo 64 и PlayStation 2. Звездный час Rambus настал в 1996 году, когда Intel заключила с ней соглашение на использование в своих продуктах памяти RDRAM и разъемов RIMM.
Сначала все шло по плану. Intel получила в свое распоряжение продвинутую технологию, а Rambus довольствовалась партнерством с одним из крупнейших игроков IT-индустрии. К сожалению, высокая цена модулей RDRAM и чипсетов Intel поставили крест на популярности платформы. Ведущие производители материнских плат использовали чипсеты VIA и платы с разъемами под обычную SDRAM.
Rambus поняла, что на этом этапе она проиграла рынок памяти, и начала свои затяжные игры с патентами. Первым делом ей под руку попалась свежая разработка JEDEC — память стандарта DDR SDRAM. Rambus накинулась на нее, обвинив создателей в нарушении авторских прав. В течение некоторого времени компания получала денежные отчисления, однако уже следующее судебное разбирательство с участием Infineon, Micron и Hynix расставило все по своим местам. Суд признал, что технологические наработки в области DDR SDRAM и SDRAM не принадлежат Rambus.
С тех пор общее количество исков со стороны Rambus к ведущим производителям оперативки превысило все мыслимые пределы. И, похоже, такой образ жизни компанию вполне устраивает.
Источник
9 лучших приложений для системного мониторинга компьютера
В каждой ОС есть встроенные утилиты вроде «Мониторинга системы» или «Диспетчера задач», которые позволяют отслеживать загрузку процессора, количество свободной оперативной памяти, сетевой трафик и другие параметры.
Они отлично подойдут для разового использования. Но если вам нужно часто отслеживать подобную информацию или вы хотите получить более расширенные данные — лучше воспользоваться специализированными инструментами.
1. Open Hardware Monitor
- Поддерживаемые платформы: Windows.
- Цена: бесплатно.
Удобная утилита для отслеживания температуры процессора и видеокарты, скорости вентиляторов, напряжения батареи, а также других сенсоров. Помимо параметров оборудования, Open Hardware Monitor умеет следить за потреблением ресурсов. Информацию можно просматривать не только в окне приложения, но и через аккуратный виджет, плавающие графики или в трее на панели задач.
2. CPUID HWMonitor
- Поддерживаемые платформы: Windows.
- Цена: бесплатно.
Ещё одна программа для мониторинга показаний сенсоров с большой базой оборудования, которую разработчики всегда поддерживают в актуальном состоянии. Датчики сгруппированы по типу и наглядно отображаются в главном окне. Наиболее востребованные параметры при желании можно вывести на панель задач и настроить их внешний вид.
3. Rainmeter
- Поддерживаемые платформы: Windows.
- Цена: бесплатно.
Мощный инструмент для кастомизации рабочего стола с открытым исходным кодом. Rainmeter поддерживает огромное количество пользовательских скинов, которые не только меняют внешний вид Windows, но и позволяют просматривать разнообразную системную информацию.
В приятных виджетах на рабочем столе отображается загрузка процессора, использование памяти и дискового процессора, а также данные сенсоров оборудования в зависимости от выбранной темы.
4. iStat Menus
- Поддерживаемые платформы: macOS.
- Цена: 12 долларов.
Одна из самых продвинутых утилит для мониторинга, которая отображает любые параметры компьютера и дополнительные данные, вроде календаря или погоды. iStat Menus отличается невероятным количеством настроек и продуманным интерфейсом.
Краткую информацию можно просматривать в статусной строке macOS, а более подробную — в выпадающем меню. Причём в последнем случае она подаётся порционно: при наведении на любой параметр раскрываются детальные данные, которые, в свою очередь, тоже разворачиваются в ещё более подробный отчёт.
5. MenuBar Stats
- Поддерживаемые платформы: macOS.
- Цена: 449 рублей.
Ещё один мощный инструмент для всестороннего отслеживания системных ресурсов и информации с датчиков внутренних компонентов. Процессор, память, диск, сеть, батарея, Bluetooth, температура — всё это будет у вас перед глазами в строке меню.
Нажатие на иконку одного из параметров откроет окошко с подробной статистикой. Последнюю можно просматривать в виде комбинированной сводки по всем данным или отдельно по каждому из элементов.
Источник