История монитора
Одна из важнейших частей персонального компьютера – монитор. Именно с этим устройством визуального отображения информации регулярно происходит зрительный контакт. Параметры этого устройства напрямую влияют на то, насколько глазам человека будет комфортно работать. Поэтому по мере развития ПК люди пытались улучшить и работу монитора, сделать его более универсальным и безопасным для зрения.
Открытие Фердинанда Брауна во второй половине XIX века положило путь к созданию монитора, ученый путем долгих экспериментов на протяжении 18 лет пытался создать и, в конце концов, создал прибор, который формировал изображение при помощи электронно-лучевой трубки. Браун не запатентовал свое изобретение и на протяжении десятилетий этот механизм совершенствовали другие специалисты в области техники. Такие приборы получили названия «кинескопы». Изначально они были векторными: один луч с высокой скоростью передвигался по экрану и «рисовал» изображение. Именно это устройство было заложено в основе первых ЭВМ. Главный минус векторного кинескопа — невозможность отображать долгое время графические элементы. Поэтому на смену векторным пришли растровые, однако они в свою очередь подходили больше для телевидения, чем для компьютерной техники. Их использование требовало большой объем памяти для восстановления картинки.
Первые компьютеры выводили всю информацию на печатные носители. По мере развития электронно-лучевой трубки, ее начали внедрять в ЭВМ. Впервые такое устройство было представлено 1948 году и носило название «Manchester Small-Scale Experimental Machine». Наряду с этим механизмом были созданы и другие, но все они отличались от современных компьютерных мониторов, так как в основном работали как осциллографы.
Начиная с 1951 года, электронно-лучевые трубки активно развиваются в США. Их использовали для отображения в небе вражеских самолетов в случае воздушной атаки. Уже к 1960-м годам такие мониторы стали одной из составляющих ЭВМ. При этом для улучшения работы монитора, а также качества изображения, в устройство добавили дисплейные станции. Они форматировали знаки на экране.
Так как в те времена ЭВМ была дорогостоящая вещь, решением этой проблемы стало создание терминалов (экранов), позволявших подключаться к одному компьютеру с разных мониторов. Сначала это приспособление помогало отображать только текст из 12 строк по 80 символов в каждом. В 1972 году терминал мог демонстрировать 4 цвета.
В 1975 году был выпущен первый компьютер со встроенным монитором. Однако скорость его работы была медленной. Поэтому в 1981 году был создан видеоадаптер Monochrome Display Adapter, бравший на себя работу центрального процессора. Однако он мог выводить лишь текстовые изображения. Несколько месяцев спустя был выпущен цветовой адаптер, отображавший 16 цветов на экране, но такие устройства не позволяли сделать картинку качественной и четкой.
Монитор, использовавший все функции адаптера, был создан в 1983 году. Первопроходцем можно назвать компанию IBM, уже за ней стали появляться аналоги по всему миру. На протяжении нескольких лет каждая фирма вносила новшества в свои изобретения, улучшая тем самым объем памяти, качество изображения, а также возможности мониторов.
Стоит выделить видеоадаптер VGA, который был представлен в 1987 году. По сравнению с другими устройствами он мог отобразить 256 цветов, а его разрешение было 640×480 пикселей, чего не было раньше. Этот разрешение признали мониторным-стандартом.
Однако вскоре на смену ЭЛТ пришли ЖК мониторы. И если XX век можно назвать эрой электронно-лучевых трубок, то последние десятилетия на пике популярности находятся ЖК-мониторы.
Источник
История компьютерных мониторов: создание, появление, развитие
Привет, друзья! история развития мониторов неразрывно связана с историей телевидения. Именно телевизор с электронно-лучевой трубкой стал прототипом компьютерного дисплея в привычном для нас виде.
Из чего состоит монитор, более детально вы можете узнать из этой публикации . А сегодня я расскажу, как был изобретен этот девайс и как усовершенствовался в процессе «эволюции».
С самого начала
Актуальность создания монитора возникла в связи с необходимостью выводить в понятной для человека форме, результаты работы электронно-вычислительной машины. Первые ЭВМ были огромными устройствами, занимающими целые залы, так как работали не на транзисторах, а на лампах.Как такового дисплея не было: их заменяло обилие лампочек, по которым инженер определял, что же там насчитал такой «компьютер».
Первые лучевые трубки использовались как один из видов памяти, а не устройство вывода информации. Однако конструкторы скоро поняли, что ЭЛТ можно использовать несколько иначе. Первые работоспособные дисплеи, которые умели отображать примитивную графику, возникли как гибрид осциллографа и радара.
Не было даже речи об отображении текста. Параллельно с этим, для вывода информации использовался телетайп – электронная пишущая машинка, которая могла вывести сгенерированных ЭВМ текст.
Первые мониторы
В начале 60-х годов прошлого века, конструкторы поняли, что можно использовать электронно-лучевую трубку как замену бумаге в телетайпе.
Такое устройство подключалось к электронно-вычислительной машине, через специальный кабель и могло отображать текстовые символы. К началу 80-х годов их «научили» отображать уже несколько цветов.
Однако стоило такое устройство чрезвычайно дорого, поэтому позволить его себе мог только крупный институт. Дон Ланкастер вместе с группой энтузиастов решили эту проблему и создали для тогдашних компьютеров видеотерминал, который мог передавать сигнал на экран телевизора.
В числе первых брендов, обративших внимание на эту идею, была всемирно известная компания Apple.
Качественный скачок
В конце 80-х годов наметилась настоящая научно-техническая революция. Такие компании, как Apple, TI, Radio Shark, Commodore не просто стали массово выпускать мониторы: они уже вовсю трудились над их дизайном. Конкуренция в этой нише позволила снизить стоимость.Пока речь не шла о массовости – даже в США позволить себе иметь компьютер, могли только состоятельные граждане, однако доля компьютеров для домашнего использования неуклонно увеличивалась. Особым шиком считался цветной экран.
Параллельно предприимчивые бизнесмены наладили выпуск RF-модуляторов, которые могли преобразовывать сигнал с композитного видеовыхода и адаптировать его на понятный телевизору «язык».
Однако в связи с ограниченной пропускной способностью те, кто серьезно работал с компьютером, все же приобретали соответствующие мониторы.
В 1981 году IBM начинает выпуск мониторов для компьютеров с монохромным дисплеем и видеоадаптером MDA, которые отличались резкостью цветов. Для цветных экранов был разработан адаптер CGA, который подключался с помощью специального кабеля.В 1984 году появился адаптер EGA, который отличался более высоким разрешением и большим количеством цветов. Достойных конкурентов у компании, длительное время не было.
Apple и прочие
Первый компьютер Macintosh представлял собой монохромный 9-дюймовый дисплей, способный воспроизводить растровую графику в черном и белом цветах. Размер изображения был всего 512×342 пикселей.За три года, которые компания потратила на разработку, она стала передовым брендом, выпускавшей прекрасные на тот момент мониторы, с точной цветопередачей и высокой резкостью.
Появление аддитивной цветовой модели RGB, позволило Apple, IBM и другим брендам совершить настоящий прорыв: теперь с помощью смешивания, можно было синтезировать на экране миллионы цветов. Разработчиком этой технологии считается компания Atari ST.
Со временем инженеры придумали, как избавиться от необходимости подключения отдельного вида мониторов для каждого типа адаптера. Монитор от компании MultiSync, динамически поддерживающий целый ряд резолюций, дал толчок к внедрению стандарта VGA.
Это произошло в 1987 году, но слоты такого стандарта, до сих пор, можно увидеть на бюджетных видеокартах.
В середине 90-х годов большинство мониторов было бежевого цвета – как для ПК, так и для «Макинтошей». Эти недорогие VGA дисплеи могли обрабатывать целый спектр разрешений. Эксперименты с размерами мониторов, позволили создать устройства с диагональю до 21 дюйма, включая вертикально ориентированные.
Жидкие кристаллы
Параллельно с этим, велась разработка ЖК-мониторов, первые экземпляры которых появились еще в 60-х годах и использовались в электронных часах и калькуляторах.
Первые ноутбуки использовали монохромные дисплеи, которые отличались низким энергопотреблением. Однако они требовали отдельной подсветки и отличались низкой контрастностью.
Технология совершенствовалась и к концу 90-х годов спровоцировала настоящий бум: на тот момент компьютер уже не был какой-то «диковиной», а вот ноутбук считался статусной вещью, которая по карману только состоятельным господам. На тот момент они имели достойную цветопередачу, приемлемый угол обзора, собственную подсветку.
Это дало толчок к применению ЖК-мониторов в связке с компьютером. Как обычно бывает, первые модели были технически несовершенными, имели небольшую диагональ, но при этом стоили чертовски дорого.В 1997, сразу несколько компаний представили Led-мониторы, которые по качеству изображения и цене, наконец то смогли конкурировать с ЭЛТ (читайте детальнее о видах мониторов для компьютеров).
Настоящее время
В 2007 году объемы продаж жидкокристаллических мониторов впервые превзошли таковые у ЭЛТ. Их доля на рынке стремительно увеличивалась, а сегодня купить новый дисплей с электронно-лучевой трубкой невозможно, так как их выпуск фактически прекратился.
Да и использование такого винтажного девайса – не самая лучшая идея: для человеческих глаз самый дешевый ЖК-монитор менее вреден, чем топовые модели ЭЛТ прошлых годов.
При этом наблюдается тенденция к увеличению диагонали. Сегодня 22 или 24 дюйма считается стандартом для игрового ПК. Более продвинутые эстеты используют мониторы с разрешением до 4К, а то и несколько таких устройств сразу.
Однако и это уже – не пик прогресса: в последнее время активно разрабатываются VR-технологии. Статусным уже считается иметь дома шлем виртуальной реальности, который позволяет полностью погрузиться в игровой процесс.
И на этом наш ликбез окончен. Если у вас остались вопросы, задавайте их в комментариях. Также советую почитать как выбрать правильно монитор и какие параметры следует учитывать при этом.
Если же, ищите где приобрести, то рекомендую вам этот популярный интернет-магазин , там есть большой выбор мониторов . Буду благодарен всем, кто поделится этой публикацией в социальных сетях. До завтра!
Источник
История создания и развития компьютерных мониторов
Какой поразительный эволюционный путь прошел компьютерный монитор, прежде чем превратиться в то, что можно наблюдать сегодня! Он не всегда выглядел таким, каким мы видим его в наши дни. Если заглянуть лет на сорок назад, а то и пятьдесят, то можно увидеть, что первые мониторы представляли собой неотъемлемую часть компьютера, предназначенную для контроля над вводом или выводом только текстовой информации.
Их называли «Видеотелетайпы» — маленькие экраны которые были способной выводить информацию лишь в двух цветах – чёрном и белом и снабженные электронно-лучевой трубкой. Подобная ситуация длилась вплоть до конца семидесятых годов, пока на основе телевизоров не разработали первые дисплеи для компьютеров с композитным видеовыходом.
Компания IBM в 1981-ом году представила первый персональный компьютер, который состоял из трёх частей: клавиатуры, системного блока и монитора. И в этом же году IBM выпустила монохромные дисплеи, поддерживающие видеоадаптер MDA (Monochrome Display Adapter), что принесло компьютерам резкость изображения. Чуть позже появились мониторы, которые поддерживали новый стандарт CGA (Color Graphics Adapter) для цветной графики. Они передавали четыре цвета и давали разрешение 320 x 200 пикселей. Далее IBM уже к 1984-му году представила улучшенный стандарт EGA (Enhanced Graphics Adapter). Теперь мониторы отображали 16 цветов и имели разрешение экрана 640 x 350 пикселей.
В 1987-ом году IBM представила следующий стандарт для видеоадаптеров и мониторов – VGA (Video Graphics Array). Для передачи цветовой информации предполагалось использование аналогового сигнала, который разрешал использовать VGA-мониторы совместно с последующими адаптерами новых поколений, способных осуществлять вывод большего количества цветов.
На 1987-ой год мониторы при разрешении 640×480 пикселей были способны отображать уже 254 цвета
В 90-х годах наблюдается прогресс в создании комплектующих для компьютеров, понятно, что и компьютерные мониторы не отставали в развитии достигнув цветопередачу в 16,8 миллионов цветов при разрешении 1600 x 1200 пикселей. Но мониторы на основе электронно-лучевых трубок (ЭЛТ-мониторы) обладали рядом серьёзных недостатков. Основным недостатком была их громоздкость и высокая величина электромагнитного излучения. Однако можно смело утверждать, что до начала 21-го века была эра ЭЛТ-мониторов.
Еще с шестидесятых годов разрабатывались дисплеи на основе жидких кристаллов и в 21-м веке они о себе заговорили. С начало это были очень несовершенные конструкции, которые не могли похвастаться ни размерами экрана, ни цветопередачей, ни контрастностью. В восьмидесятых они лишь нашли применение в качестве дисплеев калькуляторов и электронных часов. Однако вскоре с развитием новых материалов и технологий они сперва достигли по всем параметрам ЭЛТ – мониторы, а скоро по некоторым параметрам и превзошли их. На сегодняшний день ЖК-мониторы являются наиболее распространёнными, и, скорее всего, этот текст Вы читаете, используя один из таких мониторов.
Прогресс не стоит на месте, и уже на замену ЖК – мониторам идут новые мониторы на основе органических светодиодов (OLED), которые, значительно дешевле и намного удобнее в использовании, чем ЖК — мониторы.
В сравнении c жидкокристаллическими дисплеями:
- меньшие габариты и вес
- отсутствие необходимости в подсветке
- большие углы обзора — изображение видно без потери качества с любого угла
- мгновенный отклик (на несколько порядков быстрее, чем у ЖК) — по сути, полное отсутствие инерционности
- высокая контрастность
- возможность создания гибких экранов
- большой диапазон рабочих температур (от −40 до +70 °C[2])
Ожидается, что на смену OLED-дисплеям могут прийти более эффективные и экономичные дисплеи TMOS (Time-Multiplexed Optical Shutter, «оптический затвор с временным мультиплексированием») — технология, которая использует инерционность сетчатки человеческого глаза. Также идут разработки O-TFT (Organic TFT) — технологии органических транзисторов. Кроме этого ведутся разработки по созданию доступных 3D – мониторов. Развитие мониторов, как и жизнь, продолжается.
Источник
Путь длиной в семь тысяч пикселей: эволюция разрешений мониторов и наших требований
За последние полвека монитор стал неотъемлемой составляющей компьютерной системы, ключевым инструментом взаимодействия между машиной и пользователем. В последнее время наша команда плотно занималась исследованием этой ниши аппаратного рынка – как для ее возможного освоения, так и для продуманного технического оснащения сотрудников. В частности, нас интересовало, в каком направлении и какими темпами развивалась технология изображения, какова динамика рынка и что востребовано у различных групп пользователей – прежде всего, той, с которой мы на данный момент активно работаем, разработчиками ПО. Под катом приводим ту небольшую сводку, которую составили для себя в ходе анализа доступных материалов и статистики.
Эволюция разрешений в действии
Начинать разговор о типах выводящих устройств для визуализации данных можно издалека – хоть с ЭВМ, оснащенных кинескопом. Однако за точку отсчета в современной истории мониторов обычно принимают семидесятые-восьмидесятые годы – период, когда в сфере аппаратных решений произошло сразу несколько ключевых событий. На этом этапе «рабочая станция» программиста приняла привычный для нас вид: терминалы с удаленным доступом к общей ЭВМ сменились персональными компьютерами. Трансформировалась и технология генерации изображения – с появлением видеоадаптеров (первый из которых, Monochrome Display Adapter, был разработан IBM в 1981 году) нагрузка на процессор и оперативную память снизилась, что позволило отдавать больше ресурса графике без ущерба для системы.
Разрешение экранов с MDA составляло 720×350, и работали они с весьма узким диапазоном данных – черно-белыми текстовыми символами. В том же году вышел Color Graphics Adapter, который предлагал ряд дополнительных преимуществ: графический режим наряду с текстовым, поддержку шестнадцати цветов и возможность работать в нескольких разрешениях в зависимости от потребностей в цветопередаче (максимальное разрешение, 640х200, было доступно при работе в текстовом режиме с отображением двух цветов). После паузы в пару лет за ними последовал усовершенствованный Enhanced Graphics Adapter с расширенной палитрой (шестьдесят четыре цвета) и разрешением 640×350 пикселей.
Итогом этой серии разработок IBM и важной вехой в истории мониторов стало создание графического адаптера Video Graphics Array в 1987 году. Это был технологический скачок сразу в нескольких отношениях. Цветопередача стала намного точнее и детальнее за счет того, что число поддерживаемых цветов возросло сразу на несколько порядков (всего 262144 оттенка, из которых при построении конкретного изображения могло применяться шестнадцать). Изображение вытянулось по вертикали – было введено новое разрешение, 640х480 пикселей. Соотношение сторон 4:3 оказалось оптимальным для восприятия и впоследствии долгое время считалось вариантом по умолчанию. В общей сложности VGA работал с десятью вариантами разрешений, что позволяло пользователям подгонять число цветов и размер картинки под свои предпочтения и возможности монитора. Наконец, в новой модели стал использоваться аналоговый интерфейс связи между адаптером и монитором – задел на будущее улучшение цветопередачи. Все это в совокупности сделало VGA рыночным стандартом на годы вперед.
IBM PS/2 Model 50 — первая модель ЭВМ, где использовался VGA
Разумеется, это ничуть не замедлило конец развитию технологии. В конце восьмидесятых – первой половине девяностых вышло еще несколько улучшенных версий адаптера, известных под общим названием Super Video Graphics Array, которые постепенно наращивали объемы видеопамяти, диапазон цветов (до 16,7 миллионов) и размеры картинки. На рубеже десятилетий появилось знаменитое разрешение 800×600, рекорд (но не популярность) которого вскоре побила модель с разрешением 1024×768. По тем данным, которые аналитикам удалось вынести из прошедшей эпохи, до двухтысячных люди преимущественно имели дело с экранами на 800×600, 1024×768 и 640×480 пикселей – не случайно именно эти три разрешения обычно поддерживались популярными играми. Как нетрудно подсчитать, невзирая на рост величин соотношение 4:3 оставалось неизменным.
Между тем, в мире мониторов назревала революция. В течение продолжительного периода электронно-лучевая трубка считалась наиболее практичным и эффективным путем генерации изображения на персональных компьютерах. Альтернативный метод отображения данных при помощи жидких кристаллов был известен еще с шестидесятых-семидесятых годов, однако попытки применять технологию на крупных экранах выявили массу проблем, вызванных нестабильностью прослойки. До поры до времени уделом жидкокристаллических дисплеев оставались калькуляторы, часы и смутная надежда показать себя в той нише рынка, где ЭЛТ-мониторам места не было – на портативных компьютерах.
Toshiba T1100 1985 года, одна из ранних моделей портативных компьютеров, оснащена ЖК-экраном
Так оно, в конце концов, и вышло. К середине девяностых основные недостатки ЖК-дисплеев в ноутбуках были устранены: контрастность выровнялась, цвета появились, а потребность в дополнительном освещении была компенсирована за счет встроенной подсветки. Когда же технология начала применяться на мониторах для стационарных компьютеров, стало очевидно, что при сравнимом качестве изображения, она дает много приятных бонусов – легкость, компактность, низкий расход энергии. ЭЛТ-экраны удерживались на плаву еще достаточно долго, но уже к 2003 году баланс окончательно сместился в пользу плоских мониторов. Вместе с габаритной аппаратурой постепенно ушла одна важная историческая особенность – возможность настраивать разрешение на мониторе с приемлемыми потерями в качестве графики. ЖК-экраны были рассчитаны на работу строго в том разрешении, под которое производились.
Итак, толщина среднестатистического монитора резко сократилась, остальные же измерения стабильно продолжали расти. Чтобы оценить и прочувствовать темпы этого прогресса, достаточно взглянуть на картинку ниже. Этой инсталляцией (правая часть) художник Арам Бартолл лаконично демонстрирует, как менялись размеры экранов на протяжении пятнадцати лет. Достаточно сказать, что три четверти этой стопки относятся именно к двадцать первому веку. Произведение датируется 2013 годом, так что следует также учитывать, что в своем актуальном виде оно бы пополнилось еще рядом элементов, включая бумажные дисплеи на 3840×2160 и 7680×4320 пикселей.
Наконец, помимо непрерывного масштабирования за последнее десятилетие произошел еще один достойный упоминания сдвиг – переосмысление классического соотношения сторон – 4:3. Отклонения от этого стандарта, разумеется, случались и раньше, особенно когда настала пора бурного развития ноутбуков, но до середины двухтысячных они не носили системного характера. Триггером для радикальной перемены году стало стремление привести телеэкраны и компьютерные дисплеи к единому стандарту – возможно, отчасти по причине того, что пользовательский опыт стал в большей степени вращаться вокруг видеоконтента. Как ни забавно, здесь эволюция описала полный круг: ведь история мониторов фактически начиналась с телевизионных экранов. Так или иначе, начиная с 2008 года звание стандарта перешло от пропорции в 4:3 сперва к 16:10, а затем и к 16:9.
Совершив этот небольшой экскурс в историю, вернемся к вопросу, который интересовал нас в первую очередь: как реагируют на все это многообразие возможностей пользователи ПК? Если говорить об общей массе – достаточно сдержанно и осмотрительно. Несмотря на непрекращающуюся борьбу за каждую новую сотню пикселей на экране, процесс перехода основной аудитории на новые, более просторные мониторы всегда разворачивался неторопливо. Как уже упоминалось, несмотря на то, что формально рубеж в первую тысячу пикселей был преодолен еще в конце восьмидесятых, разрешение 800×600 оставалось лидером без намека на конкуренцию чуть ли не все последующее десятилетие (насколько мы можем судить по обрывочной статистике тех лет). По данным W3Schools, еще в 2000 году ему принадлежала доля рынка в 56% — по сегодняшним меркам, цифра фантастическая – и только к 2003 первенство наконец перешло к разрешению 1024×768.
Ускоряющиеся темпы развития графики никак не влияют на интерес пользователей к новинкам – тенденция к постепенному наращиванию популярности сохраняется и по сей день. С началом эпохи ЖК-экранов разрешения становятся фиксированными — вероятно, это тоже сыграло свою роль, пресекая возможность экспериментировать с разной плотностью на старых мониторах. Если обратиться к свежей статистике 2019 года, можно убедиться, что в мировом масштабе разрешение 1366×768 по-прежнему остается самым востребованным несмотря на обилие более высокопиксельных вариантов. Примечательно, что вершины оно достигло в 2013 году, после разгона в шесть лет, и удерживалось там стабильно. Одним словом, все изученные нами данные за последние три десятка лет указывают на низкую мобильность рынка.
Статистика популярности разрешений экранов по миру за последний год
О причинах такого положения дел догадаться несложно. Во-первых, повышение качества изображения – это существенный бонус, но для среднего пользователя едва ли достаточный, чтобы спровоцировать его на немедленную замену техники, особенно в период, когда она все еще остается в ценовой категории ульстрасовременного эксклюзива. Широкая популярность приходит к новым дисплеям по большей части тогда, когда они перестают быть новыми и начинают сдвигаться в сторону рыночного стандарта.
Вместе с тем, развитие пользовательских предпочтений нельзя назвать линейно-поступательным неторопливым движением от меньших величин к большим. По мере того, как диапазон разрешений растет, люди все сильнее начинают рассеиваться между доступными опциями. На графиках Statcounter видно, что даже абсолютные лидеры в последнее время не завоевывают более трети общей аудитории, а в тройке самых популярных вариантов укоренилось «Другое», объединяющее целую россыпь разнообразных разрешений. Тот факт, что более половины работающих на компьютерах, довольствуются сильно устаревшими дисплеями, представляется нам любопытным. Возможно, к текущему моменту качество изображения минуло некоторый рубеж – стандарт стал настолько высок, что для среднестатистического человека, не слишком плотно работающего с визуальным контентом, приемлемы даже те разрешения, которые до него не дотягивают.
Однако в составе общей массы выделяются отдельные группы, которые намного острее нуждаются в качественной графике и активнее используют новые технологические возможности. Это, прежде всего, графические дизайнеры, цифровые художники, геймеры (так, в сообществе Steam разрешение 1920×1080 заняло ведущую позицию уже в 2017 году). И здесь возникает логичный вопрос: относятся ли к этой части аудитории разработчики?
Обзор интернет-источников показал, что определенного, основанного на количественных данных ответа на этот вопрос пока нет – массовых опросов среди данной группы пользователей до сих пор не проводилось. Тем не менее, нельзя сказать, что сообщество относится к проблеме равнодушно: разрозненных, субъективных изложений личного опыта в Сети более чем достаточно, от споров на форумах до рекомендаций блогеров и интернет-изданий. Разумеется, в совокупности все это создает пёструю и противоречивую картину предпочтений.
Если попытаться вывести из полифонии этого коллективного осмысления общее зерно, вырисовывается следующее. Деятельность разработчика в первую очередь связана с обработкой данных в текстовом формате, графический контент – более периферийная область. Текстовые данные при работе с кодом отличаются высокой плотностью, что требует сильной зрительной концентрации и создает нагрузку на глаза. Кроме того, большое значение имеет просторная и хорошо упорядоченная рабочая область – программисты высоко ценят возможность иметь перед глазами не только нужный фрагмент кода, но и сопутствующие материалы, источники и программы.
Из этих исходных положений можно с многочисленными оговорками сделать несколько выводов:
- Так как высокое разрешение обеспечивает более четкое, комфортное для глаза изображение теоретически разработчикам следовало бы стремиться к максимально возможному числу пикселей.
- Вместе с тем, эффект от отличного качества картинки может быть полностью нивелирован слишком высокой плотностью. Многие отмечают, что высокое разрешение при небольшом размере экрана дает массу неприятных побочных эффектов – от ряби в глазах до головной боли.
- По идее, программисты должны делать выбор в пользу больших экранов – и для поддержания разумной плотности, и для расширения рабочей области. Однако здесь нужно учитывать и другой момент: большой популярностью в последние годы пользуется конфигурация с двумя мониторами. Некоторые считают современные мониторы 4К достойной альтернативой, но у такой замены хватает и противников, которые предпочитают более четкую границу между зонами кода и не-кода и меньший диапазон движения взгляда по вертикали.
- Наконец, всё, что говорилось выше о склонности пользователей к компромиссам, когда встает вопрос о выборе между качеством изображения, производительностью и ценой, в немалой мере относится и к разработчикам. При всех потенциальных преимуществах, которые дают высококлассные экраны, большинство будет ориентироваться не на идеальное, а на приемлемое. Второстепенная роль графики означает, что вкладываться средний программист будет, прежде всего, все-таки в мощность машины.
- В некоторой степени предыдущий фактор, вероятно, сглаживается за счет того, что программисты, в целом, более осведомлены о технологических новинках и предъявляют более высокие требования к своим компьютерам, как к основному рабочему инструменту.
Но эти ментальные построения, конечно, требовали проверки реальной выборкой, пусть и в ограниченном объеме. Первым шагом стал опрос, который мы провели среди разработчиков компании. Локальная статистика, в целом, подтвердила наши выводы: в то время как в мире простых смертных все еще господствует 1366×768, постепенно сдавая позиции под натиском 1920×1080, для разработчиков это давно пройденный этап: основная конкуренция разворачивается между более современными форматами. Итоги первой валидации нас вдохновили и теперь команда аналитиков настроена проверить результат на более обширной аудитории. Просим хабровчан внести вклад в нашу статистику – позже мы обязательно отчитаемся о результатах.
Источник
Жидкокристаллические дисплеи. История, принципы работы, преимущества и недостатки
Сейчас технологии плоскопанельных и жидкокристаллических мониторов являются наиболее перспективными. Хотя в настоящее время на долю ЖК-мониторов приходится лишь около 10% продаж во всем мире, этот сектор рынка является наиболее быстрорастущим (65% в год).
Принцип работы
Экраны LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул.
Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 году. Однако долгое время никто не знал, как их применить на практике: есть такие вещества и все, и никому, кроме физиков и химиков, они не были интересны. Итак, жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Впрочем, дальше этого дело не пошло, поскольку технологическая база в то время была еще слишком слаба. Первый настоящий прорыв совершили ученые Фергесон (Fergason) и Вильямс (Williams) из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот, в конце 1966 года, корпорация RCA продемонстрировала прототип LCD — цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975-го уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 году Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.
Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы «просеивает» свет. Этот эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.
Рисунок 1. Конструкция ЖК-дисплея.
Основываясь на этом открытии и в результате дальнейших исследований стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD для настольных компьютеров.
Рисунок 2. Плоскость поляризации.
Экран LCD представляет собой массив маленьких сегментов, называемых пикселями, которыми можно манипулировать для отображения информации. LCD имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка. Слои собственно и содержат тонкий слой жидких кристаллов между собой (см. рис. 1). На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу.
Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Как видно на рисунке 2, плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели. При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы (см. рис. 3).
Рисунок 3. Плоскость поляризации.
Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем (см. рис. 4а).
Рисунок 4. Поляризация светового луча.
В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью) (см. рис. 4б). Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут принимать любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD-монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.
Вообще-то в случае с цветом несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки — при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.
Первые LCD были очень маленькими, около 8 дюймов по диагонали, в то время как сегодня они достигли 15-дюймовых размеров для использования в ноутбуках, а для настольных компьютеров производятся LCD с диагональю 20-дюймов и более. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.
Технологии STN, DSTN, TFT, S-TFT
STN — сокращение от Super Twisted Nematic. Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.
Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в «запертом» состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки — их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало (см. рис. 5), поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям (это не относится к настольным ЖК мониторам).
Рисунок 5. Конструкция ЖК-матрицы.
Также STN ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя полимерной пленки добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.
Термин пассивная матрица (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча, независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD дисплеев, которая была описана выше, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Такой дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения.
Для решения части вышеописанных проблем применяют специальные технологии, Для улучшения качества динамического изображения было предложено увеличить количество управляющих электродов. То есть вся матрица разбивается на несколько независимых подматриц (Dual Scan DSTN — два независимых поля развертки изображения), каждая из которых содержит меньшее количество пикселей, поэтому поочередное управление ими занимает меньше времени. В результате чего можно сократить время инерции ЖК.
Также лучших результатов с точки зрения стабильности, качества, разрешения, гладкости и яркости изображения можно добиться, используя экраны с активной матрицей, которые, впрочем, стоят дороже.
В активной матрице (active matrix) используются отдельные усилительные элементы для каждой ячейки экрана, компенсирующие влияние емкости ячеек и позволяющие значительно уменьшить время изменения их прозрачности. Активная матрица (active matrix) имеет массу преимуществ по сравнению с пассивной матрицей. Например, лучшая яркость и возможность смотреть на экран даже с отклонением до 45° и более (то есть при угле обзора 120–140°) без ущерба качеству изображения, что невозможно в случае с пассивной матрицей, которая позволяет видеть качественное изображение только с фронтальной позиции по отношению к экрану. Заметим, что дорогие модели LCD мониторов с активной матрицей обеспечивают угол обзора в 160° (см рис. 6), и есть все основания предполагать, что технология будет совершенствоваться и в дальнейшем. Активная матрица может отображать движущиеся изображения без видимого дрожания, так как время реакции дисплея с активной матрицей около 50 мс против 300 мс для пассивной матрицы, кроме того, контрастность мониторов с активной матрицей выше, чем у ЭЛТ-мониторов. Следует отметить, что яркость отдельного элемента экрана остается неизменной на всем интервале времени между обновлениями картинки, а не представляет собой короткий импульс света, излучаемый элементом люминофором ЭЛТ-монитора сразу после похождения по этому элементу электронного луча. Именно поэтому для LCD мониторов достаточной является частота вертикальной развертки, равная 60 Гц.
Источник